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INTRCDUCTION

This document constitutes the final report of the second phase of
an investigation into convection in the marine atmosphere and into topics
pertaining to radar sensing of the atmosphere. In a short introductory

phase reported in the contract final report (Freeman 1979}, we reviewed

relevant theoretical models of marine convection, surveyed the climato-

logical frequency of convection in the North Atlantic, and offered recom-
mendations on the modelling of triggered convectibn.

The current investigation has also had a 1imited scope of study;
the principal objective is to develop a technique for evaluating the
| conditions under which boundary layers are unstable and for computing the
‘ rate of growth of unstable motions. In recognition of the limited time

- and funds available for this study we restricted our considerations to

simple models of the boundary layer, which can be evaluated without large
computer expense and complication. Nevertheless, it has been possible to
include in this framework all of the physical effects which can contribute
to the perturbed motion of the marine boundary layer. We take into account

the influence on linear stability of wind shear, static stability, Coriolis

: = force, turbulent diffusion, large-scale convergence, and the geostrophic

wind. A procedure has been developed for solving the linear perturbation

equations to obtain the complex eigenvalues and eigenfunctions correspond-

b ing to a given unperturbed state of the boundary layer. The equations are é
] sufficiently general that realistic profiles of wind speed, density, and ;
F diffusivity can be accomodated. We have provided alternative sources of
FJ L the profiles of mean quantities; they can be prescribed as analytic
£i functions, or they can be supplied as numerical tables derived either from
Af

data or from a boundary layer model.




In our report to follow we describe this new computational
technique and the results obtained with it. We also report on related
calculations with the boundary layer computer code SIGMET, some studies
of radar properties of the marine boundary layer, including ducting, and
an investigation of atmospheric internal wave propagation.

The report is divided into four sections. In Section A we consider
the mean structure of the boundary layer as displayed by the SIGMET
computer code; stability of the boundary layer is discussed in Section B,
where formulation, mathematical implementation, and numerical studies are
presented. This section contains the major development of the study. In
Section C, radar properties of the marine atmosphere are reviewed and in
Section D a study of atmospheric internal wave propagation is reported.
We believe it should be possible to associate radar surface ducting and

internal wave activity with other properties of the marine atmosphere.
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A, MEAN STRUCTURE OF THE MARINE BOUNDARY LAYER

One of the capabilities which we require for the analysis of the boundary
layer is a description of the profiles of temperature, humidity, wind field,
and diffusivity. These quantities evolve through diurnal and inertial cycles
in response to external forcing parameters, such as sea surface temperature,
geostrophic wind, large-scale convergence or divergence of the horizontal
wind, and short- and long-wave radiation. They are also influenced by initial
conditions of atmospheric temperature, humidity, and wind field. In response
to these quantities the boundary layer changes with time as determined
by the Navier-Stokes equations and an approximation (based on second-order
closure) to the fields of several second-order variance and covariance
quantities formed from turbulent fluctuations.

The above-described model determines the iaminar boundary layer in
terms of the average or unperturbed profiles of the atmosphere. Deviations
from the mean motion have been parameterized in terms of the turbulence
description as they affect the mean motion itself. This model is required
as a starting point for a more detailed model ( see Section B) which describes
the response of the laminar layer to small perturbations. It is also the
starting point for the calculation of derived profile quantities (see Section
C) which characterize the propagation and scattering of microwaves in
the atmospheric boundary layer.

The unperturbed boundary layer is described by the appropriately
averaged Navier-Stokes equations. These are given in Eq. B-2 and in more
detail in an appendix to our proposal to the Naval Research Laboratory
(Freeman, 1978). In the latter report the formulation of the SIGMET

computer code embodying these equations is also described and several examples
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of calculations with the code are presented.

In support of the current investigation we have carried out several
additional calculations of the marine boundary layer with SIGMET. These
calculations have been used as input data for the stability calculations of
Section B and to provide the mean profiles from which the microwave modified
refraction coefficient and structure function were calculated in Section C.
The initial data for the calculation are shown in Fig. A-1, and the profiles
of velocity, humidity and potential temperature at a time (0108 local time)
eighteen hours after the initial time are presented in Fig. A-2 through A-5.

Finally, we have incorporated the terms describing the large-scale
convergence or divergence of the horizontal winds into SIGMET. This term
can be prescribed as an arbitrary function of altitude. From it the vertical
velocity of the air column is calculated, which, in turn, determines the
vertical advection terms. Applications of this version of SIGMET will be

made at a later time.
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i FIGURE A-1.
{ Local time = 010Z hours.

Initial potential temperature and specify humidity profiles
used for a SIGMET atmospheric boundary layer calculation.
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B. STABILITY OF BOUNDARY LAYER FLOW

In reviewing literature citations to determine what physical and
mathematical approximations have been investigated, we found several
studies of free convection {without wind shear) and others of shear
instability in a neutrally stable atmosphere. The dependences of
diffusivity and wind on altitude were highly idealized, and the role of
a time-dependent unperturbed state had received little attention.

We have formulated the perturbation problem more generally to take
account of these simplications. The perturbation equations are consistent
with those solved by the computer code SIGMET which evaluates the evolution
of profiles of wind, temperature, humidity, etc., in a turbulent boundary
layer. These perturbations may be unstable; the degree of instability
depends in general on external parameters, such as heat flux and geo-
strophic wind, and on the wavelength and direction of the perturbation.
For each such combination a number of vertical mepdes are permissible.

The initial mathematical and numerical formulation was chosen to
facilitate checking with previously obtained results and to permit assess-
ment of the accuracy of the numerical solution. We assume for this
purpose that the unperturbed state is steady and that the parameters
derived from the unperturbed solution are provided on a finite grid of
representative altitudes, as is the case using SIGMET. These points are
not necessarily equally spaced. Since the coefficients are independent of
time, we may assume that the time dependence of the perturbation amplitude
corresponds to a constant phase speed. If the phase speed is real, the
perturbation is a freely traveling wave (for example, an internal wave),
but if there is an imaginary component, the wave is either damped or

amplified. The evaluation of the complex phase speed (or frequency)




constitutes the basic problem of determining the linear perturbation
solution. In the above formulation the solution is expressible &s a gﬁ
matrix eigenvalue problem containing complex coefficients. The number 5r
of modes is determined by the number of altitude intervals; the higher g5

modes of the continuous problem are suppressed by the finite difference 4

representation. The eigenfunctions corresponding to a given eigenvalue v
provide the altitude dependence of the linear perturbation. i
In the following sections the formulation of the incompressible,
steady state linear stability problem is described. The calculation takes A
into account the effects of wind shear, atmospheric stability, large-scale
pressure gradient and convergence, the Coriolis force and turbulent
diffusion; these are included in the equations given in Section B-1. The
differential equations contain derivatives of order four and lower; in
Secticn B-2 these derivatives are approximated by difference equations of
order four. The SIGMET spatial grid is not uniform in vertical spacing
in order to provide higher resolution near the surface where the wind
shear is large; we account for this nonuniformity by employing a coordinate
transformation described in Section B-3. Boundary conditions and methods
of solution of the complex matrix eigenvalue equations are presented in

Sections B-4 and B-5. The resulting computer code (PERT) has been used to

evaluate the stability of a large number of representative boundary layer
flows. To test the correctness and accuracy of the solutions, comparisons
were made with several reported stability analyses; these are discussed

in Section B-6. A large number of parameters governing stability of

atmospheric flows can be explored with the PERT computer code. In

ORI Y o R

Section B-7 some of these have been investigated, including the simultaneous

effects of static stability, wind shear, Coriolis force, and large-scale

11




divergence. We also present calculations based on the unperturbed
boundary flow derived from the SIGMET code. In Section B-8 we summarize

the status of linear stability analyses.
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B.1 The Equations

The Navier-Stokes equations for ar incompressible stratified fluid

take into account the conservation of mo-entum in a viscous fluid and the

equation for the conservation of mass in the presence of diffusion.

These

equations also include the effect of the Coriolis force in addition to

the pressure in the fluid.

In a fixed coordinate system x (positive

eastward), y (positive northward), and z (positive vertically upward) the

equations are
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Equation B-(1) contains the wind velocity components (U, V, W), the

pressure P, the density p, the Coriolis parameters f = 20sinc, and

f* = 20cos¢, and the (primarily turbulent) viscosity K and diffusivity K'.

Our approach is to consider solutions to B-(1) which represent

horizontally stratified boundary layer flow (the unperturbed solution)

and to investigate its linear stability against perturbations involving

horizontal inhomogeneity.

linearized by neglecting all nonlinear terms.

The equations for the perturbations are

The mean flow equations neglect all horizontal variations except

for an assumed large-scale (synoptic) pressure gradient and convergence
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or divergence of the horizontal wind speed. These ter~s, which can be

functions of altitude, are assumed to be derivable fro~ synoptic weather

data. Including these terms, the mean flow ejuations are

4
o0 | 30 - : a0 '
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;
v, 7Y 5 _ 3 N
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W , oW Y 3 . oW 4
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| )
oW :
3z~ - D B-(2)
In the third equation for the vertical component of momentum it is 'i
permissible to neglect the terms containing the velocity because over 2 }

flat surface they are very small compared with the acceleration of
gravity g, and the term containing the hydrostatic pressure gradient
%;Z. In this (hydrostatic) approximation the vertical momentum equation
becomes

S ke, e neA Tt e e

LY B-(3)

The final equation gives the vertical wind speed by imposing the

surface boundary condition W = 0 and integrating the horizontal divergence

} 0= %% + %g , which is a known function of altitude. Other quantities

appearing in B-(2) are the geostrophic wind components
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assumed to be known functions of altitude. The turbulent viscosity K and
diffusivity K' are determined by appeal to turbulence theory. In 1-D SIGMET,
which solves the above system of equations, a set of auxiliary equations
is solved to determine the turbulent diffusivities. These are obtained by
second order closure hypotheses; a prognostic equation for the turbulent
kinetic energy and algebraic equations for derived turbulent quantities
result. In the following applications we are able to use the 1-D SIGMET
code to provide data on the mean flow solution, including the turbulent
diffusivities. In doing so, we require a number of quantities (such as

f, D, Ug, Vg, surface boundary conditions, etc.) which specify the problem
in terms of local and synotic parameters. Their values determine whether
the unperturbed atmosphere is stable or unstable and the amount of wind
shear and turning in the boundary layer. A more detailed description of
the SIGMET formulation is given by Freeman (1978).

The mean flow solution described above will respond to a perturbation
in accordance with the Navier-Stokes equations (1); the perturbation may
grow, diminish or maintain constant amplitude depending on both the nature
of the mean flow and of the perturbation itself. The perturbation is
assumed to have a small enough amplitude that the governing equations may
be linearized (neglecting terms of higher order than the first in the
perturbation amplitudes). While the perturbation itself is a function of
horizontal position, as well as altitude and time, the coefficients o the
governing equations do not depend on horizontal position. For this reason,
the perturbation may be assumed to be a sinusoidal function of the horizontal

coordinate, x.
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. ik
S =g (zk,t)e'S 2 B-(4)

where k is the vector horizontal wavenumber of the perturbation; a
perturbation of more general horizontal dependence may be constructed by
superposition of these solutions. For the assessment of stability the
wavenumber vector k = (kx, ky) constitutes an additional parameter which
must be sampled.

The time dependence of the solution ;o(z,t) determines the stability
of the perturbation. In general, the governing equations form an initial
value problem; starting from a given amplitude, the solution will change
with time in accordance with the perturbation equations themselves. The
time dependence is simplified, however, if the coefficients of the
perturbation equations are independent of time; such is the case when the
solution for the mean flow forms a steady state, as in the case of the
classical Ekman spiral. In general, the mean flow solution is not steady
(due to diurnal oscillations, inertial oscillations, initial state of un-
stable heating, etc.), but it is sufficiently convenient that ve will

make this assumption for the interim. Then we can write.

Uy(2,kst) = o (2,k)e” 1ot B-(5)

and if we wish, the more general solution may be constructed by super-
position.

We now carry out the derivation of the linearized equations govern-
ing the perturbation. By subtraction of B-(2) from B-(1) and using B-(4)

we obtain

16
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In the perturbation equation for w the small term involving f' was neg-
lected and the hydrostatic approximation B-(3) was used to eliminate the
vertical component of the mean pressure gradient.

The equations B-(6), together with boundary conditions, constitute
the linear perturbation problem for an incompressible fluid in a very
general form. The coefficients may be quite arbitrary functions of
24 altitude and time. While we plan to return to this general problem in the

future, for the interim we assume that the coefficients do not depend on

time, so that the solution form B-(5) is applicable. The frequency w

constitutes a complex eigenvalue whose value is determined by requiring

the solution for a given wavenumber vector k to satisfy the prescribed

boundary conditions. For each value of k there is a multiplicity of

eigenvalues; they are distinguished from each other by a mode index

corresponding to the number of nodes of the solution in the altitude
range.

Let us now substitute the time dependence of B-(5) into B-(6) and

rearrange the equations for easier solution. The first two equations of

)
|
|
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B-(6) are combined to form components parallel to k (. = k-u) and

perpendicular to k (n = k‘y u - kX v)

M e o2 M N .
, (Ky u,), = W, + [ife - k-0) - k KH]u-ﬁ-sz-?P-kaw
; :
- fn+i(k U -k V)pl=0 !
Sy g g’ P ’ z
M _ , Ty L k2 M = T ,
(K, ), = Wn, + [i{w - k-U) - k KH]n-(kyU-ka)zw-fkyw §
r li
| 1
+ f - k- =0 . . i
[u+_5_ggo] 0 B-(7) .

These equatiohs are coupled together only by the Coriolis term. The

e B i1

equation for m does not contain the pressure.

It is now convenient to eliminate the pressure from the w equation

Gt T

by using the first of B-(7); we also eliminate u by using the last equation
of B-(6). When we do this the order of the resulting equation is raised

to the fourth. Rather than raise the order still higher, we solve ?

simultaneous equations for n, p and w. The equations are (neglecting f')

18
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To summarize, we have derived perturbation equations fcr a boundary layer

in which the unperturbed state contains an arbitrarily stratified density

s

R padibr - gyt
O
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and wind shear. Large-scale processes are represented by the geostrophic
wind and the horizontal divergence of the mean wind. We have included é
Coriolis terms, but have assumed incompressibility. With these effects ‘
taken into account the equations are considerably more general than have

been studied before. They include as special cases free convection,

internal wave propagation, Ekman spiral instability, etc. If the Coriolis

terms are omitted the n-equation need not be solved sirultaneously with

those for w and ©. The retention of geostrophic and divergence terms does
not greatly complicate the equations. The diffusion terms increase the

order of the equations; in general, the equivalent ordsr of a single

equation is the eighth, but if the Coriolis term is zero the order is

19




recuced to sixth. The constant density /neutral stratification) problem
is of sixth order, and becomes of fourth order when f = 0. Omitting
ciffusion terms, the equations are of fifth order unless W = 0 when they
are of second order. For this last case the equations are readily solved
by iteration of the solution of the second order equations as in ZMORE
(Milder, 1973). It is thus apparent that the internal wave propagation
problem (which is of second order) can be generalized to include geo-
strophic terms and unstable atmospheric stratification, as well as the
effect of wind shear. Numerical solution of the equations could be
accomplished by several different methods, of which the iterative

' integration method used in ZMODE has been alluded to. The method of

time integration has also been mentioned. Each of these methods presents

some difficulties; the iterative method would require generalization to

higher order coupled equations as would the eigenvalue search procedure,

while the time integration method suppresses modes with smaller eigen-

values. In the following sections a matrix solution technique is outlined.

This method has the advantage that all eigenvalues are obtained without

jteration, and accuracy is readily controlled.




B.2 Difference Equations

The matrix method of solution of RB-(8) requires that difference
equations on a finite grid of points replace the differential equations.
When this has been accomplished the resulting system of linear coupled
algebraic equations can be expressed as a matrix equation for the vector
consisting of the unknown values of the three quantities r, - and w at
each of the altitude positions. Since the frequency « enters into certain
terms of these equations as a linear factor, the complete set of equations
can be cast in the form of a generalized eigenvalue problem. In general,
the elements of the coefficient matrices are complex and the resulting
eigenvalues may be complex. The real part of the eigenvalue measures
the phase speed of the disturbance, while the imaginary part measures its
growth or decay rate. If the atmosphere is divided into I cells or grid
points the values of the unknown eigenvector X (consisting of n, o and w)
are 31 in number. The difference equations corresponding to B-(8) are of

the form
AX = BuX B-(9)

where A and B are square matrices of order 3I. The exact form of the co-
efficient matrices depends on the difference equations, on the order of
arrangement of the elements of the eigenvector, and on the boundary
conditions. In order to simplify the matrices (and facilitate partitioning

into IxI submatrices) the order of the eigenvector is chosen to be

Xz {n], r,2 . . . T]I, C--I, 5’2 Coe C‘I, W}, W2 .




‘n this section the difference approximazion to the differential sxpressions

will be developed. We assume, at this time, that the independent variable

‘i .. . . ) X = IAX
% is divided into equal intervals _X sucn that Xmax Xm]n 12X, the

center position of each interval is associated with the values Ny &5 and

W In the following section we consider the transformation from the

altitude Z to X, such that the interval in Z is non-uniform, as required
for accuracy in a planetary boundary layer calculation. Referring to
B-(8), we note that the highest order of derivative is tne fourth, which
requires a minimum of five adjacent points for representation. This
implies that at lTeast one of the IxI submatrices will be pentadiagonal

(containing non-zero values on the principal diagonal and two bordering

diagonals above and two below it). We elect to represent lower order

derivatives with a fourth order difference expression as well, since to

do so will presumably increase the accuracy, will invoke a consistent

order of difference approximation, and will not increase the number of
non-zero matrix elements. Boundary conditions will affect the difference
expressions at points immediately adjacent to the top and bottom boundaries
and points one zone removed from them. In the interior of the mesh the
fourth order centered difference approximations to the first four

derivatives are




DR w875 e e .

L) gt Tie i * BT - i
T dx 12 Ax
Loy o die | Fig T U6F g - S0F Y N6E - Tia
dx 12Ax2
L3y % T Y2 - 2 T
dx3 2Ax3
8y dh Tiepm Mt 6Ty - At f
dx4 Ax4

where the derivatives are evaluated at X; and the subscript on the dependent

B-(10)

function fi denotes the position at which it is evaluated. The above

expressions may be represented more concisely in matrix notation

£(0) Fi-2
2500 N L
f2)=c |5

f(3) f1'+]
(4) fiial

where the coefficient matrix C—](5X5) is obtained from B-{10)

1 0 0 0
0o (12ax)7!
¢cl={o o (128x8)"]
0 0 0 (28x3)7]
0 0 0 0

B-(11)




TR TR o e

e

e

w1ile it is quite straightforwerd to derive the expressions given in
B-(10), it is desirable to forrulate a general method for doing so which
is also applicable at boundary positions. Consequently, the function and
its derivatives are expressed in terms of neighboring values of the

funztion. The quartic approxiration is

f(x) = i+
J

ne1

v 3
: aj(x X7,

in terms of which the derivatives at x; are

(k) _
fi = k! a,

We can now find the four unknown coefficients aj by evaluating the function at

X = x; 4 nox (the four neighboring positions),

(3 &

J

[ [ I e B

1

where n = -2, -1, 0, + 1, + 2. We have replaced &. by the corresponding
cerivative, and now have five equations for the functicn and its four

gerivatives. When written as a matrix equation B-{12) becomes

0
Fiz ()

1
Fi 7
£ |=c | ¢®

3
fin 3
f. £(4)
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oy wnhere
}
] -2 4 -8 16 1 0 0 0 0
) 1 -1 1 -1 1 0 Ax 0 0
2
c-lv o 0o o o o o & O
= 2 3
1 1 1 1 o 0o o & o
4
’ 1 2 4 8 16 0 0o o o0 F[. 8013
The inverse of C gives the desired coefficient matrix C'] of B-(11).
» It is now easy to write the C matrix by inspection; the C'] matrix
‘ is obtained by numerical inversion, and subsequent operations are performed
as matrix and vector products, resulting ultimately in the elements of the
j » A and B matrices.
|
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%
X
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Coordinate Transformations

The finite difference intervals of the altitude Z are chosen as a

function of altitude in the SIGMET boundary layer computer code. Since

the mean wind shear is large near the surface, higher resolution near

the surface results in greater computational efficienc.. An analytic
expression has been chosen which contains a linear and a logarithmic term,
such that near the surface the wind velocity obeys the law of the wall.
Qur application of this transformation is based on the form chosen for

the SIGMET computer code; it contains, in fact, two transformations. The
first introduces a scaled pressure coordinate, o, the purpose of which is
to simplify boundary conditions in a multidimensional primitive variable
calculation; for the present application this transformation is not
essential and introduces some complication which would otherwise be
absent. The second transformation generates a non-uniform mesh in the

- coordinate in order to improve resolution in the surface boundary layer;
the latter transformation is useful for the perturbation equations as well
as the equation of mean flow. To maintain compatibility with SIGMET we
retain both of these transformations which are described below.

The sigma coordinate is defined in terms of the mean pressure P,

where = = ﬁé - P;, and ﬁé = mean pressure at the surface, and 5} = mean
pressure at the top of the computational region. The - coordinate has the
range 0 < ¢ < 1, where zero corresponds to the top of the mesh and unity

+o the surface. Using the hydrostatic relation B-(3) we obtain
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g
dz =~ " =

8-(14)
The transformation to a non-uniform ¢ grid uses a 1og-linear relation

X =1+ 2 in (-5 + :o) .

where « and g, are parameters determining the extent and severity of the

non-uniformity. We will require

g§'= -+ 1-0 g o ) - B-(15)
(0]

azn[so/(1+oo)]-]
The x-coordinate will be divided into uniform intervals .x =

1
We now wish to express the Z-derivatives (up to order four) which appear

in B-(8) in terms of x-derivatives; due to the uniform interval on X we
may use the difference expressions, derived in Section B-2, to evaluate

the X-derivatives.

Q

g

z

_ a B-(16)
- %E' (1+ 1-0 + ©

d
) oo
R dx

d
dx

010.
N

ala
&i%

Taking account of the dependence of the coefficient of B-(16) on -, the

higher derivates are obtained by successive application of the above

formulae.
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Clearly, equations B-{16) and B-(17) can be expressed as a matrix, relating

the z-derivatives with the x-derivatives, having the form

¢ /1 0 0 0 0 £(0)
(1)
f, 0 oy O 0 0 f(z)
fzz < 0 %1 %22 0 0 f(3)
foaz |10 931 o3z @33 O f(q)
fr222 0 opg Gg2 %43 %44 J ,

B-(18)
where the coefficients oz are obtained in an obvious way from B-(16) and
: J
B-(17), and f(J) = g—-Jr-as before. Denoting the matrix of B-(18) by D, the
o\ dx

¢(3) ector can be evaluated from B-(11) to give
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j+2 B-(19)

Finally, B-(19) can be multiplied by the vector consisting of the co-
efficients of the derivatives of each of the variables n, o, w in the
three equations of B-(8); the results are the vectors giving the elements
on the pentadiagonals of the submatrices. For illustration, consider the
simple example of the terms from the third equation of B-(8) containing
n: if (nz + ;5 n). The coefficients of n; are given by the vector result-
from i {if gﬁ-, if, 0, 0, 0} DC™'. These coefficients are a
function of altitude gue to the height dependence of'Ez.

The above procedure is used to obtain all of the matrix coefficients
in the interior of the matrix. Boundary conditions, however, must be in-
voked on zones near the boundaries. These affect the coefficients result-

ing from the two zones adjacent to the top boundary and the two adjacent

to the bottom boundary. These are derived in the next section.

e r e e
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B.4 Soundary Conditions

In Section 2 difference approximations were derived between the
derivatives entering the perturbation equations B-(8) and the values of
the function at mesh points. These relations involve values of the
function two intervals above and below as well as at the cell in question.
Clearly, at cells adjacent to or one cell removed from the boundaries
the difference expression B-(11) is not suitable because it would require
undefined values of the functions. At these locations, however, the
differential equations also require special treatment in the form of
boundary conditions describing physical conditions of the interaction of
the fluid and the boundary. These boundary conditions are often idealized
and simplified, corresponding in some cases to the necessity of truncating
a large region with an artificial boundary (such as the upper boundary
of the planetary boundary layer).

In this section we derive relations analogous to B-{11) which are
to replace B-(11) in the boundary cells. This is accomplished by modify-
ing the equations B-(12) which define the coefficients of the quartic
(and which, in turn, are proportional to the first four derivatives). Each
equation corresponding to an evaluation of the quartic outside the region
is replaced by an equation corresponding to a boundary condition. It is
clear from this construction that each boundary cell will require two
independent boundary relations, while cells removed from the boundary will
require a single relation.

The boundaries are assumed to be rigid. At the surface (the lower
boundary) a no-slip condition of zero velocity is invoked. since the fluid
is assumed to be viscous. This condition also applies to the perturbation

velocity, and implies that w = W, == 0. At the upper boundary we
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assume the- the vertical velocity vanishes, and that there i: no shear
stress or turbulent transfer across it. Applied to the perturbation

Wop = Myp = gy F (. We also assu~e for the

0. This set of boundary conditions is sufficient

gquantities this gives w

interim that - = 0 at z
for the differential equations {four concitions for the fourth order w
equation, and two conditions for each of the second order - and : equations).
The difference equations, however, are of fourth order in all gquantities;
consequently, some non-physical boundary conditions are required to furnish
the additional constraints on the - and - equations.

Let us consider the w equations, where we have w = W, = Qatz=20
and w = Wy = 0 at z = H. At the cells adjacent to z = 0 and z = H both
of the boundary conditions are applied at the positions of the boundary
one-half cell thickness away. In the cells one removed from z = 0 or
Z = H only one of the boundary conditions is needed; we choose the
condition w = 0 to be applied at the bottom and Wy = 0 at the top. At

the lower boundary cell, for example, the equations derived from the

quartic consist of

4 . .
f =0=f +1a, axd (-172)9 ,
1

o} 1 J
4 . )
1 = - T 3 ' J-] J—] \
fo 0 = : Jaj LX (-1/2) , B-(20)

where the first two equations correspona to evajuating tne functions in




) the mesh interior at 2:x and 'x above the center of the boundary cell,
E
the third equation corresponds to w = 0 at -1/2 Ax, and the fourth
F corresponds to W, = 0 at -1/2 >x. Equations B-(20) can be written in the
i » matrix form B-(13)
r f
; (Bottom Boundary) g%
o | I TS R V7 SR 7 1 0 0 0 o0 ¥
C LS V720 V7 S V7: SRR VAT 0 ax 0 3
! 2 N
: C= 1 0 0 0 0 0 0 Q%_ 0 ?4
;- 3 © ]
’ 1 1 ] 1 1 0 0 0 A% 04 i
| 1 2 4 8 16 bx_ |
o o o o szl | N
’ B-(21)
The remaining boundary matrices are obtained in a similar way. Suppress- ;
. ing the second matrix factor of C, which is the same for each case, we lf
' '% [ ] have f;
'f (Next-to-Bottom Boundary) ;
3§
HE
] 1 -3 6.75 -13.5
1 ~1 1 -1 1
c= 1 0 0
’ 0 0
1 1 1 1 1
1 2 4 8 16 s
| . B-(22)
A
V‘
’




R, Ot

(Next-to-Top Boundary)

B-(24)

In the calculations which have been carried out to date we have used these

same matrices for the boundaries of the --and o-submatrices, as well as for

the w-submatrices. It will be desirable to reexamine the : boundary
conditions and to relax the condition of - = 0 at the top boundary. In
order to do so it will be necessary to define separate C-matrices at the
boundaries for n, o and w. It is likely that the boundary conditions at
the top of the mesh will not turn out to be very significant because the
perturbation amplitudes should become small at high altitude. If the

boundary is located high enough the solutions should not be affected by

conditions there.
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.3 Numerical Solution of Matrix Eige-velue

o

We employ a standard subroutine pzckage for sclving the ccmplex

eigenvalue problem. In order to place B-!S) in tre “or~ required by the ‘g
solver we multiply by the inverse of the 3 matrix Fj
i

B™'AX = .X B-(25)
The B matrix inverse was obtained quite economically since it has a block ,3

diagonal form

I 0 0 i
B = 0 Bosy 0 » where I is the identity matrix ﬁ
0 0 1
and the element B,, is purely imaginary. We form Bé% and construct N
i
!
!
I 0 0 ‘7
-1 -1
8 =|0 B,y 0 |
0 0 I -
=

The matrix B']A is then submitted to the 2igenvalue-eigenvector subroutine.
The computer sclution of the compiex general eigensystem was per-
formed with routines from the EISPACK (Smith, 1976) mathematics library. These are
FORTRAN-based routines published under the auspices of the Applied
Mathematics Division, Argonne National Lzboratory.

The eigensystem package includes & driver routine "CG" which calls

2 recommended sequence of subroutines to find the eigenvalues and (if re-

auested) eigenvectors of a complex gener:zl matrix.
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The sequence of routines called iz:
(a) CBAL: balances a complex general matrix.

(b) CORTH: given the balanced complex general
matrix, reduces it to & sub-matrix ‘
of upper Hessenbers form by unitary r'
similarity transformztions.

(c) COMQR: (eigenvalues only) or COMQR2 (eicen-

! values and eigenvectors): finds the

; eigenvalues and eigenvectors of the
complex upper Hessenberg matrix using

the QR algorithm of Francis (1961, 1962).

: (d) CBABK2: forms the eigenvectors of the original
! complex general matrix by back-
f transforming those of the corresponding
) balanced matrix.
For convenience in comparing with test results the eigenvalues may
be presented in two alternative formats; as real and imaginary parts of
» the eigenvector, or as the magnitude {amplitude) and phase of the eigen-
vector. Since each eigenvector contains an arbitrary complex amplitude,
we have normalized the magnitude to 1 for presentation, and require the
«-! » phase ¢ to be in the range - m < ¢ < =. Examples of this presentation are
i i; given in subsequent sections.
Based on comparisons discussed in Section B-6, the computer code
» and eigenvalue subroutine are found to give quite accurate estimates of
the lower mode eigenvalues. However, we have found that the 31 x 31 ele-
ment eigenvalue subroutine fails under a limited range of conditions. We

’ believe that these conditions correspond to double roots of the indicial

equation, which can arise under certain idealized conditions. This

problem was encountered, for example, when f = E} = 0. We have shown that -

i ’ under these circumstances the indicial ezuation becomes

e e ——— e
o ol
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where each of the quantities is an I x [ mztrix. For =~

A]] = A33, and each of I eigenvalues is ~epeated. In t~is instarze i:
is possible to reduce the order of the ezuetions, for exarple by ~emc.ing
the equations forr, which are decoupled “rom the others. The resiltirg
21 x 21 element problem is solved by the s:andard techrique withcut
difficulty. When parameters are chosen o correspond to & generz’ prcblem
the difficulty of eigenvalue degeneracy is not encountered. Conseguertly,
it appears that the failure of the technique will be restricted to a
limited range of parameters where a coefficient {such as f or EZ) is very
small, but not zero.

We anticipate that difficulty also might occur associated with a
critical level (where w = K+U) but have not examined this point in
detail (see Section D). It is expected that the amplitude of the perturb-
ation will increase near the critical level, causing a breakdown of the

equations. However, viscous damping will act to 1imit the growth; it

is likely that a careful inclusion of absorption and choice of zoning will

eliminate ¢:iiviculties associated with critical layers.




L e

) g.6 Test Calculations
The computer code described in Zzctions B-1---Z-5 atove rzs tzen : ;
programmed and tested against numerical soluticns obtained with cther t’
Lo techniques and by other investigators. These comparisons verify that the ?

; coding is substantially correct and tna: solutions are being obteéined with
reasonable efficiency. Two classes of test problems were evaluated and com-
) parisons were made.
In the first, the solutions of the inviscid negative buoyancy stability
oroblem were obtained. These can be corpared with eigenvalues cezlculated
' with the ZMODE iterative integration corputer code, which we have employed
previously. When there is no wind these solutions correspond tc internal wave

propagation with real eigenfrequencies. Using an analytic profile of buoyancy

’ and zero wind speed we calculate the eigenvalues as a function of wave number
|
using different numbers of zones in the vertical direction. We found that ;
the eigenvalues were all real, correspording to undamped propagating internal
i ’ waves and that they occur in positive-negative pairs, corresnonding to propaga-
|
f tion in a given wavenumber direction anc in a direction 180%from the first.
In these comparisons uniform zoning was used. For a case in which the buoyancy
’ frequency profile is given by
N = ¢y X Pexp(-2x), 0 F 2% -75.,
]
where Z = is the vertical height,
J
’ sal
| Y= —Z/C3 and C1 = 3.41 X 10 , I. = 25.0.
x
)
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) «€ have compared both eigenvalues and eizenfunctions. ~nis case served as a
verification that the matrix eigenvalue subroutines thz- we employ, after some

initial difficulty, are calculating correct eigenfunctions. Using 20 zones

) we obtaired the following eigenvalues for the case 'k’ .5eyc/km. (we
cermpare them with the corresponding values resulting frzin the ZMODE computer

code):

Mode | PERT | ZMODE

.00310 .00311
.00145 .00146
! .00095 .00095
.00070 .00074

-
2w N

We also display the eigenfunctions corresponding to the vertical
velocity perturbation w, as calculated by the two methcds. In Fig. B-1
the eigenfunctions for mode 1 are shown; it was necessary to rotate the eigen-
function by an arbitrary phase and normalize it to unit maximum amplitude.
Figs. B-2 and B-3 correspond to the second and third mode numbers. In each
of these cases the phase of the eigenfunction is independent of altitude.
These comparisons indicate that excellent agreement between PERT and ZMODE
eigenvalues and eigenfunctions is achieved. Agreements for higher modes
pecomes less quantitative as the mode number approaches the number of vertical
zones. It should be feasible, however, to form arbitrarily large mode number
solutions by increasing the number of zones.

The second test problem corresponds to the instability of Ekman

scundary layer flow. An idealized version of this probler was studied by
111y (1965), who assumed that the atmosphere is neutrally stable and that the

| <i€fusivities are independent of altitude. The wind field is a solution of the
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b steady flow equations for a time-and al:itude-independent geostrophic wind,

and corresponds to the classical Ekman :z<-al.

-
<
|

: = Vq (1-e‘Z/D cos Z/D),

V= Vg e~Z/D i 7/0,

1

where Vg is the height-independent geostrophic wind, and D = (v/Q) is the
Ekman depth. Lilly calculated stability diagrams for the Orr-Sommerfeid

) equation and for a more general problem in which the Corjolis terms are

included in the perturbation equations. Our test consisted in comparing with

a large number of cases reported by Lilly. For the Orr-Sommerfeld problem,

parameters close to the point of maximum instability were selected for several

| values of the Reynolds number R = X%E, where Vg is the geostrophic wind speed,

2 is the altitude-independent turbulent diffusivity, and D is the characteristic 1

Ekman length (see Lilly, 1966 for a comprehensive discussion of this problem).

In constrast to the internal wave problem, the eigenfunctions of the Ekman

problem depend strongly on the direction, as well as the magnitude, of the
wavenumber of the perturbation. We examined several cases in which the
direction of the wavenumber vector, the Reynolds number, and the zoning were
varied. In agreement with Lilly's results, we found that R = 65 is stable

and that R = 110 and R = 500 are unstable. In both cf the latter cases,

instability is due to a single mode of the perturbation; all other modes are

& strongly damped. We also compared the real and imaginary parts of the eigen-
frequency with Lilly's calculations (by inspection of his small diagrams).

We found general agreement with the growth rate and phase speed of the dis-

P e ]



turbance in the vicinity of maximum instzt<lity as wel? as at positions where
the growth rate is smaller or negative. with few vertical zones (corresponding
to the initial calculations) the eigenvelues did not compare as well as in the
internal wave calculations. Increasing <he number of uniform size zones
improved agreement, but substantial differences (. 25 in worst cases) still
remained with 32 zones in the vertical. Modifina bouncary conditions in zones
one removed from the boundary (to relax the boundary constraint) restored
agreement. Since the wind profile contains large shear near the surface, a
nonuniformly zoned mesh was also tested. This produces some improvement, but
we have not had the time to determine optimum mesh paremeters or the enhance-
ment of accuracy. Subsequently, the Coriolis terms were added to the matrix
equations and a test of the complete system of equations was made. We calculated
several cases recorded by Lilly corresponding to the wavenumbers where the
inviscid and the parallel instabilities have maximum values. In addition to
the eigenvalues we were able to compare our eigenfunctions with those given

110 the local maximum value of in-

1l

by Lilly. For a Reynolds number of R
stability due to the parallel mode is located near k = 0.3 and ¢ = -11°.

For these values of the parameters we obtain wg = .124, wyp = .0052, which

are in good agreement with Lilly. In order to compare eigenfunctions we formed
the absolute value of the normalized amclitude and the phase of the eigen-
functions. In Fig. B-4 we show these quantities for the w eigenfunction;

they are in good agreement with Lilly. The inviscid mode has its max-

imum near k! = 0.5, ¢ = 8°; the corresconding eigenvalues are

g = .0461, “p = .0021, and the eigenfurctions are shown in Fig B-5. As
irdicated by Lilly, the Coriolis terms ~ocify the stability of the bcundary

leyer significantly through the paralle” instablity mechanism. The effect

orn it ¢
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S* these terms is to lower the critical 2e.ncids nurbe- and to cranqe the
craracter of the unstable motion. Conseauently, it is important to include
trese terms in the stability analyses of a neutrally stable bouncary layer
even though at first consideration one would anticipate that the Coriolis
terms are too small to affect the results,

It should be remarked in passing that the above formulation does not
include all of the terms containing the Coriolis parameter. Referring to (8)
we find that the perturbation equations for - and w have terms proportional
to (Ug, Vg) and f which we discuss below.

On the basis of the above comparisons it is now quite likely that the
mejor terms of the perturbation computer codes are correct, and that the
numerical methods developed for its solution are working satisfactorily.

There remain, however, a large number of terms which have not been tested.
These include terms involving gradients of diffusivity, vertical mean velocity,
and geostrophic terms in the perturbation equations. It will be necessary

to test these terms as well in the course of performing a comprehensive study
of boundary layer instability.

A difficulty arises in trying to explore the many parameters which the
computer code contains. Ultimately these free parameters will be constrained
by the realizability of the mean flow sclution. That is, it is not practical
or realistic to independently vary the many degrees of freedon presented by the
mean flow quantities, since they must be related to each other in such a way
that they represent a consistent solution of the mean boundary layer equations
fzs, for example, in SIGMET). This consideration, in fact, constrained our
formulation, dictating several features of PtRT, such as the matrix form and

tne non-uniform zoning. Several calculétions have been performed in this mode,

a1
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and they are reported in Section B-7. Frowever, chronciogically we first 3'
carried out some calculations designed to show the capabilities of PERT by
obtaining new boundary layer stability results. These findings are also r
reported in the next section. '
i
’ :
i)
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) B-7 Stability of Boundarv Layer Flow

In the previous section tests o the PERT comp.ter code were described
for two classes of problems differing greatly in physical content: wave
N propagation in a stably stratified medium, and secondary circulation of an
idealized shear flow in a neutrally stratified atmospkere. These problems
show that the technique gives expected results in these cases, so that we may

» now look at several more general boundary layer problems. In this section the

results of calculations sampling some of the additional parameters which affect :
41
boundary layer stability are reported. The combined effects of shear and :

i » stratification appear not to have been investigated. First we explore the

| ; effect of a constant density gradient added to the Ekman flow problem invest- i
; igated in Section B-6. The mean wind configuration of the Lilly study is retained,

S ] the diffusivities are equal and independent of altitude as before, and the

' density gradient is taken to be independent of altitude as well. We will

explore how the Orr-Sommerfeld stability diagrams are modified by this constant

————
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density gradient; we expect to find increased instability when the atmosphere

is positively buoyant, and stabilization of the shear instability for sufficiently

large stable stratification. The density gradient introduced into the perturba-

tion equations is a dimensionless quantity scaled by the Ekman layer depth,

D, employed in the neutrally stable case. The figures and discussion below

v2

v

A typical value of the potential
1

F refer to this scaled quantity oz* =

’ density gradient in the atmosphere of 10°° w gives a scaled density

gradient = 3 x 1073,

For the case of the Orr-Sommerfeld equation with R = 110 we have

e explored the dependence of the growth rzte on the density gradient, :Z*.

| Using Kx = 0, Ky = 0.5 (near the point ¢f maximum instability of the neutrally

| stratified case), we varied the density gradient as shown in Fig. B-6.
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A very small stable density gradient is sutficient to zcnieve stebility
(;Z* = - .0002); more strongly stable atmospreres exhizit damping for all
modes of the perturbation. It is interesting, however, that the growth rate
does not continue to decrease in the stable region beczuse another mcde assumes
the role of the largest imaginary eigenvalue. This moce becomes dominant at
cz* > - .0004, and its magnitude decreases slowly for rore stable stratification.
This mode (and other modes having about the same damping rate) is probably
an internal wave mode, which becomes more prominant as the Brunt-Vaisala
frequency is increased. The dependence of the growth rate on the magnitude
and direction of the wavenumber at oz* = - 0001 for R = 110 is shown in Fig.
B-7. This shows that the configuration of the unstable region is not substantially
changed, but, as expected, the extent of the unstable region is decreased.

The character of the solution also changes rapidly when the density
gradient becomes positive. In Fig. B-6 another mode becomes most unstable when
o, * =~ .0002. For this mode the growth rate is a rapidiy increasing function of

z
pz*. For typical values of unstable atmospheric stratification the predominant
mode will be this convectively unstable one; the shear instability will not
influence the solution appreciably. It appears from a couple of calculations
that the convective mode is very much less directional than the shear mode.

We have also performed calculations for the Orr-Sommerfeld problem with
R = 500, for which the unstable region in KX, K‘y
case, as indicated in Fig. B-8, the density gradient must be more negative

space is Targer. In this

(cz* = - ,0015) to overcome the shear instability. As in the lower Reynolds

number case, there is a crossing of mode trajectories. The damping rate for

the most nearly unstable mode in the larger cradient rzgion is now quite small,

corresponding to the larger Brunt-Vaisala ‘reauency.

aid




In view of the observed effect ¢® <ne loriclis “zrce on tre Ebman
stability criterion, we have repeated seveval of the ce culations assessing
the effects of stratification with the Coriclis terms ircluded. First, we
examine the effect of the same terms retained by Lilly znd included in our
“eriolis test calculations (see Section §-€). The effect of densiy gradient
on growth rate for this case is shown in Fig. B-9. As expected from Lilly's
diagrams the instability near :Z* = 0 is decreased for - = 0.5, = = 0.

However, for stable stratification the "gravity wave" mode, which soon dominates
the stability diagram, shows very little dependence on the Coriolis parameter.
consequently for oz* larger than that for mode crossover, the most unstable

mode growth rate approaches that with f = C. Similarly, for unstable strati-
fication the '"convective" modes are not denendent on f so that sufficient in-
stability also reduces the influence of the Coriolis paramiter. These properties
are displayed in Fig. B-9, by comparison with Fig. B-6 (with f = 0). It is
interesting that the mode responsible for instability at :Z* = 0 shows markedly
smaller growth rate with the Coriolis term present over fhe full range of density
gradient.

The effect of the large-scale convergence/divergence of the mean flow
field also modifies atmospheric stability. We have explored this effect by
adding the terms in W and D to the neutral Ekman boundary layer perturbation
equations. Starting from the Lilly formulation in which the standard Coriolis
terms are included, we added a height-independent divergence term D (which

may be either positive or negative). The corresponding mean vertical velocity

is linear with height z,

W= - Dz.
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Starting fron tre case Ro= 110, - = 0, 7. = 0.5, we nz.e varied T tc assess

Tts effect on tre growth rate :f tre most unstable eigenvelue. In Fig. B-10
the growtn rate is a function of the sceéled divergence in a range of values
actually founcd in the atmosphere. We find that the agrc.th rate is quite
insensizive throughout this range ¢f corvergence and divergence. It should
be remarked that the effect of moisture condenation is not taken into account
in this investigation; the effect of 1ifting condensation on convective instability
will be much larger.
Finally, we have performed several calculations using the capability to
transfer data from the SIGMET code to the PERT code. In this procedure all
of the mean variable profiles needed to initiate the linear perturbation
calculation result from the unperturbed boundary layer calculation. Data are
extracted from a particular time of a time-dependent calculation, even though
this is not entirely consistant with the time-independent perturbation for-
mulation. However, the SIGMET solution over a water surface is slowly chanaing.
These calculations differ primarily from previous calculations in having
profiles of mean variables which are not simplified for the sake of convenience.
The wind field can change in nagnitude and direction, the buoyancy field may
contain simultaneously megative and positive regions, and the turbulent transfer
coefficients may vary with altitude as required by the boundary layer equations.
Several mathematical difficulties prevented us from carrying out these
calculations until very date in the investigation. Consequently, we have not
been able to explore the many parameters governing this boundary layer stability
problem. We are restricted to sampling the stability diagrams for a single case.

The SIGMET problem has neen reportec in Section ~; it corresponds tc cycle

72 (time = 1608 local time) of a marine summer boundary layer having a
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cecstrophic wind speed of 10 n s. Some cf the profite Zete are snown in Figs.
~-. &nd A-2. Ve repeated the zalculaticrn with lower reigciuzicn using 20 zones

~

in order to reduce the computational expense of the

-~
-

-~ ca'culations. Sub-
sequently, a survey was made of linear stability as a “.nct‘on o wavenumber,
“he dispersion diagram for these calculations is shown ‘n Fig. B-11. A

number of the modes appear to be internal waves displaczd by the geostrophic
wind speed. The up-wind traveling waves are more complicated, displaying
several mode crossings. These later waves will encounter critical levels at
lower altitudes of the boundary layer. Apparently, a shear-unstable mode

is also present. The magnitude of the growth rate of this mode increases with
wavenumber as shown in Fig. B-12. The similarity of the dispersion diagram

with that from the internal wave study of Section D is quite striking. Further

investigation of this an similar problems is warrented.
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g.c Summary and Remarks

5; The linear stability of boundary layer flow has been investigated

. under quite general conditions of wind shear, stratification and turbulent

. excrange. Perturbation equations have been derived admitting arbitrary fﬂ
dependence of mean flow quantities on altitude, and these are formulated for

numerical solution as a matrix eigenvalue problem. A computer program (PERT)

containing this formulation have been developed to evaluate quite general

boundary layer stability problems. Calculations have been performed dupli-

cating known results for internal wave propagation and Ekman flow instability.

The stability of generalized Ekman flow in stratified atmospheres has also

i been studied. We have determined the amount of negative buoyancy needed to ‘5
stabilize the shear instability and have displayed some of the systematic
features of the stability diagram. An advantage of the matrix method is that

all of the lowest modes of the eigenvalue problem are obtained. Using the

resulting data it then becomes possible to trace the competition of several
modes. For the problem of a stratified shear boundary layer we found that
the crossing of different mode trajectories is responsible for the changes
in stability character when stratification departs from neutral in both the
positive and the negative direction. In the case studied we found that only

the mode responsible for instability near neutral stratification is sensitive

to the Coriolis term.
{ We have also investigated the effect of the large-scale convergence

‘ or divergence of the horizontal wind field on stability. This field is almost §

alvays present due to synoptic weather features such as cyclones and anti-

| cyclones. When this term and the resulting mean vertical velocity were




added to the neutrally stable Ekman boundary layer we found that the growth
rate of instability was modified, but thet within the range of realistic
values of convergence or divergence the magnitude was not appreciably changed.
We conclude that its effect on secondary circulations not involving moist '?
processes (which have not been included) is minimal. o
A version of the PERT computer code has been developed which accepts
data from the one-dimensional boundary layer computer code, SIGMET. To demon-
strate this capability a linear stability analysis of a case involving a
marine atmosphere has been performed. The selected case contains stratifi-
cation which is slightly stable through the mixing layer and quite stable
above. Rather small turbulent intensity is present in the lower layer.
Several modes may be identified as corresponding to damped internal waves.
One mode of the eigenvaiue spectrum displays exponential growth; this pre-

sumably corresponds to the shear layer instability (without Coriolis effect, |

e

since this term is currently omitted from the version of PERT used in this
calculation).

In Section D some additional PERT calculations are presented in
connection with an investigation of the internal wave spectrum to be expected
in a marine atmosphere.

To date, we have been able to indicate qualitatively the range of

capabilities of the linear stability analysis through the illustrative cal-
culations described above. Due to limitations of funds and time we have not
been able to exploit this tool to its full capability. In assessing our
progress toward understanding instability and secondary circulations of

marine atmospheres it is important to place linear analysis in perspective.
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The advantages of this approach are quite significant. As we have shoun,

essentially all physical effects can be taken into account, and :ne resulting
calculations make guite modest demands in terms of computer time. Wit~ this
method it is feasible to carry out hundreds of separate calculations, tnereby
surveying the stability parameter space more thoroughly than possible 2y other
methods. The accuracy of the linear perturbation approach is more dif<icult
to evaluate, since it depends on the particular response of the svstem. To
illustrate, the internal wave solutions are either undamped or slightly
damped by viscosity. They will frequently have small enough amplitude to
satisfy the linear approximation. Under certain conditions, however, they
will grow in amplitude until they can no longer be considered to be of small
amplitude; they then modify the “unperturbed" solution and are no longer
governed accurately by the linear equations. When there exists an unstable
mode we expect that the linear solution ultimately will break down. In that

~

event the linear equations suggest the conditions for the onset of instability
but give no information on the asymptotic state (if one exists) of the
secondary circulation. Clearly, there is no substitute for a nonlinear
calculation if one requires information about the state that the system
reaches at late time. Information about Tinear and nonlinear behavior appears
to be complementary in many respects.

OQur linear perturbation studies should be augmented with nonlinear
calculations, as proposed earlier. But it will also be desirable to extend

the linear calculations in several respects. We are currently improving the

accuracy of the PERT code by introducing double precision arithmetic in

selected parts of the code. There is also potential improvement for more |




cereful boundary conditions and zoning. From the physical point of view

further work is needed on time-dependent unperturbed solutions, on compressi-

571ity, and on moisture effects. Additional work on coupling with the boundary Ié
! Tayer codes will enhance our ability to investigate realistic problems in 'é
' convective instability. Finally, as mentioned earlier, we believe that the ’é
arplications of the PERT code are far from exploited. Considerable informa-
) tion can be obtained about the systematics of stability/instability of

marine boundary layers. Not the least of the benefit will come from enhanced

understanding of the dynamics of competing modes. i
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c. Radar Properties of the Marine Ztmosphere

An apparent correlation exists between a surface radar duct and
certain convective phenomena. Consequently, it is desirable to try to
bring convective instability of the marine boundary layer into the same
theoretical framework as that of tropospheric ducting. It is also desirable
to estimate the crossection for radar scattering from the marine atmosphere.
Calculations with the SIGMET 1-D boundary layer computer code were described
in the final report of the first phase of this work (Freeman, 1979). At
that time we incorporated a calculation of the radar structure function
based on the variances and covariance of temperature and water vapor
fluctuations into SIGMET. Consequently, we were able to associate profiles
of the radar structure function with various environmental conditions
governing the marine atmosphere. An example of this data is shown in Fig
C-1, taken from the SIGMET calculation described in Section A. The radar
structure function is large at the base of the temperature inversion and
in a zone adjacent to the surface.

The latter region under appropriate circumstances can result in
a surface radar duct through channeling of the beam by the gradient of
refractivity. A quantity which measures the ability of the atmosphere
to support an over-the-horizon radar duct is the height-modified microwave

index of refraction
M=n-1+%,

where Z is the altitude, and R is the radius of the earth. This quantity

depends on the index of refraction, n, which is a function of pressure
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p, temperature T, and humidity C:

n-1=2p(1+5

A negative gradient of the quantity M indicates that ducting will occur.
Consequently, the altitude range through which the gradient is negative
determines the depth of the surface duct. In Fig. C-2 we show the profile
of M early in the SIGMET calculation mentioned above. This indicates that a
surface duct is present having a height of ~15m, in addition to an elevated
duct at abound 500m. The M-profile later in the calculation (Fig. C-3) at
local time = 0108., shows that the surface duct has essentially dissipated
while the elevated duct has risen in altitude.

Recently, several calculations of the evolution of profiles of
microwave refractive index have been presented by Burk (1980a), who also
employs a 1-D boundary layer model. Several different cases are examined,
two of which correspond to marine atmospheres. These cases display surface
duct formation, although greater attention is devoted to elevated ducts.
The characteristics of the surface ducts are not resolved in the figures
presented by Burk and he has not studied the systematics of these ducts.

We have not had an opportunity to survey the dependence of duct
height on atmosphere parameters either. However, it is clear that such
a study is feasible using a tool like SIGMET. In addition to extending
our understanding of conditions under which ducting takes place, it could
be determined to what degree the surface duct is associated with the
susceptability of the atmosphere to trigging of convection.

A somewhat similar study can be made of the radar structure function.
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A

icain, Bure (1%20b) has recently given exarzles of the orzfiles of the
~icrowave structure function, in addition to tnose for <he optical range
and for acoustics. Using the same three cases for iilustration as in
Burk (1980a), the altitude dependence and relative conzributions of temp-

erature and moisture fluctuations were evaluated. Calculations have also

been made recently (Burk, 1980c) examining the effects of a gradient of ;
sea surface temperature on radar ducting and the structure coefficient.
These calculations indicate that there is a substantial change in these
guantities due to air advection over moderate gradients. Such effects

are expected to be significant in coastal waters. Similar calculations

were performed by Lewellen and Teske (1975). ]
We can conclude (as in the case of ducting) thzt theoretical

models of boundary layer structure and associated radar structure function

are available. The models have not been carefully corpared with data or

evaluated parametrically. Investigations of the systematics of ducting i
and scattering are desirable as part of a program to improve understanding

of the radar properties of the marine atmosphere. In particular, radar

properties can be correlated with weather conditions affecting other local

phenomena such as the formation of convective cells.
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D. Internal Waves in the Marine Atmosphere

Under suitable environmental conditicns the marine atmosphere will
support the propagation of internal waves which may be sensed in a number
of different ways. These waves provide an irportant mechanism for the
transport of energy and momentum throughout the atmosphere, they disturb
the mean flow in regions where they are generated and where they are dis-
sipated, and they represent a systematic variability of the atmospheric
state which can influence boundary layer measurements (SethuRaman, et.
al., 1980).

It is of interest to study the properties of internal wave propaga-
tion as a topic of general interest in the physics of the marine atomsphere
in order to assertain their rode in the processes mentioned above. More
specifically, however, internal waves give rise to atmospheric disturbances
which may be detected by radar; we are interested in examining whether
they could offer an explanation for clear air echoes which propagate with
respect to the ambient wind field. It is considered to be an established
fact that large-amplitude internal waves on breaking produce patches of
clear air turbulence, and it is likely that other detectable events require
large amplitude waves as well.

We are not able to examine nonlinear aspects of internal wave
propagation in this investigation, but the boundary layer linear perturbation
calculation described in previous sections is useful for part of such a
study. We can take into account the profile of stability, the effects of
wind shear, and the damping by boundary layer turbulence and of convectively

unstable regions. Propagation speed, campinrg ~ate, and vertical cdistribution

0¢ the perturbation can be calculated as functions of wavelength, propagation




direction, and mode number. It appearc zhat the interral we.e dropacation
problem has not been examined in this generality previously.

We have performed calculations .sing the PERT code, demonstrating ’i
its applicability to this class of problem. One particular case of mea- o
surements of May 16th, 1979 was chosen “or study; the lower ztmosphere is
near neutral stability (but stable) and is capped by a more stable region.
The wind direction is substantially independent of altitude, and the wind
speed increases with altitude, rapidly increasing near the surface and
changing more gradually in the vicinity of the inversion base. The profiles
of buoyancy frequency and wind speed are shown in Fig. D-1. In this in-
stance, the wind direction was so nearly independent of altitude that the
turning with height has been neglected. The buoyancy freauency Shows
maxima at altitudes well above the base of the inversion; the lowest peak
is at ~ 900m. Qualitatively, for large wavenumber perturbations the dis-
trubance tends to be concentrated in the vicinity of the buocyancy peak
and the phase speed is small. Calculations were carried out for this
problem assuming that the turbulent dissipation is zerc. Wave directions
transverse to and aligned with the wind were examined. The former cases
are unaffected by the wind, and form positive/negative pairs of real
eigenvalues corresponding to waves traveling in opposite directions.
When the waves are aligned with the wind the pairs of solutions are split
apart, corresponding roughly to the augrentation of the phase speed for waves
traveling down wind and & reduction of thase speed for waves traveling
against the wind.

In Fig D-2 the phase speed as & function of the magnitude of the

wavenumber of the perturbation is showr for the transverse case. It is
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important te note that the maximum phase speed is .. 4r/s, wrich is achieved

Tor small wavenumber and the first mode. 7Tne smallest mode number (cor-
i
responding to the highest frequency) will give the largest degree of ducting ri
E

of the internal wave, resulting in localization of the amplitude around the

peak of the buoyancy frequency. This tendency is illustratea in Fig. D-3

in which the amplitude of the mode 1 solution for k = .015 is shown.

We note that the maximum amplitude is found near the height of the peak of

buoyancy frequency, and that the wave is substantially confined to the region

of large buoyancy frequency. For this case, however, the phase speecd is 3

no larger tham .7m/s, which is considerably smaller than the observed

disturbance speeds. With decreasing wavenumber the phase speed increases
at the same time that the internal wave occupies a wider channel. We find
that the wave is still substantially confined to the region above the base
of the inversion for a wavenumber as small as .004 (wavelength -.1500m.),
for which the phase speed is ~2m/s. This speed is still rather small, and i
it is difficult to raise it appreciably for the case in question. We have |
already chosen the fastest (the fundanental) mode and we quote the phase
speed rather than the group speed. Higher speeds in general are achieved
by a larger buoyancy freguency, by longer wavelenaths of disturbance,
and by a deeper stable zone of the atmosphere. For longer wavelengths
for our case, however, we tend to spread the internal wave amplitude through-
out the boundary layer thickness, and it would be necessary to invoke a
mechanism (such as shear instability) for creating turbulence near the
inversion base.
In Fig. D-4 the corresponding results for phase speed vsS. wavenumber

are shown for the internal waves oriented parallel or anti-parallel with
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Haves having Tow mode number propacating wizn the wind are

primarily doppler shifted to a phase speed higher by arorcximately 4m/s.

At higher wavenumbers the effects of the terms containing wind curvature

and slope become significant, resulting in a smaller decrease in phase

speed. For waves propagating against the wind directicon the dispersion

curve shows larger departures from the zero-wind case. Fig D-4 indicates
that, in addition to a general displacement upwards by ~ 4m/s of the negative

phase speed modes, there is considerable re-ordering and changing of shape f

of the dispersion curves. Some mode crossing cases occur, and, in contrast
to the transverse wave cases, the imaginary part of the freauency is not
zero. Due to the two-peaked structure of D-1, it is qualitatively reasonable

to expect some mode crossing due to resonance between the two propagation

sl

channels. And it is also possible that there may be shear-unstable modes

in this case. However, the anti-parallel modes almost invariably satisfy
conditions for critical level occurrence. It is possible, due to the i?
coarse zoning in the vertical, that these cases void catastrophic growth |
(and absorption), but are nonetheless inaccurate (most of the critical levels

will occur near the surface where the amplitude frequently is otherwise

small). We have not explored this question in sufficient detail to evaluate

the effect of the critical levels on internal waves propagating against

the wind. 9

b

3 In order to evaluate the effect of turbulent dissipation and to take ;
; a step toward treating critical levels mcre accurately a qualitative

study of the effects of the dissipation terms was made. We may anticipate
the trends resulting from dissipation. For a strongly stable atmosphere

dissipation will be Tocalized near the surface where wind shear produces




a source of turbulence. Internal waves having appreciable ampiituae at

low altitudes will be damped while waves which are confined to elevated
regions of large stability will be much less affected. Consequently, rg
waves originating in a distant source will be filtered so that waves of
higher frequency predominate. We also expect that critical layer absorp-
tion will affect the propagation of the high frequency waves traveling

in the upwind direction when the profile of the wind speed results in a
zone of vanishing intrinsic frequency. In this case the waves exhibit fine
structure near the critical level and enhanced dissipation occurs. e have

made one calculation which accounts qualitatively for dissipation by in-

troducing a height-independent diffusivity having a magnitude of 2m2/s,
corresponding to a stably stratified atmosphere. The dispersion calculations
for aligned internal wave propagation were repeated with this addition.

The real phase speed vs. wavenumber is shown in Fig D-5; comparison with D-4
indicates that dissipation has a significant effect on phase speed. While
the Tower modes propagation with the wind are scarcely affected, the

up-wind modes are substantially changed. We also examined the imaginary
parts of the frequency and found that no growing modes are present, and

that significant wave decay takes place. For the down-wind modes the

decay is not large; the first mode, for example, has a 3-hour e-folding
decay time for k = .006 and longer lifetime for longer wavelengths. Higher ;
mcdes decay somewhat faster. The up-wind modes, on the other hand, are strongly r
damped; the lowest phase speed mode for k = .006 decays in a few minutes,

although some of the higher modes, paradoxically, decay more slowly, Although

we have not explored this behavior systematically, the behavior suagests that

the diffusion terms have the effect of providing the damping required to dis-




sipate internal wave energy at the crizical levels.

Finally, the dependence on internal wave ¢ rez*icn .as czlcu zted for
the case k = .001 and a diffusivity of ¥ = 2m2/s. in Tic. I-€ the phese
speed of the first two modes are plotted as a functior of argle, rancing
from the transverse direction to the dc.n wind directsn. The prase speeds
each shift by -~ 4m/s as expected from the doppler shi®t. The maximur
phase speed of these waves is not much larger than 4m/s, Tre effect of
wave direction is to orient the waves with respect to the wind so thet
higher or lower phase speeds are attained. Turbulent dissization pre-
ferentially damps the higher mode and up-wind traveling waves. The low
mode waves with component of wave number in the down-winc direction have
longer 1ifetimes; the longer wavelengths can survive rany hcurs, but those
of short wavelength have an e-folding decay time of ~ 1 hour,

The study of internal wave propagation using the linear perturbation
equations provides information on the characteristics of waves favored by
environmental parameters. For the case investigated in our example we
have calculated the dispersion relation and the vertical distribution of the
amplitude of internal waves having a range of horizontal wavenumbers.

The technique could also be applied to other profiles of wirdspeed and
lapse rate to determine the dependence on these paramezers. In particular,
the additional damping due to an unstable region of the buoyancy profile

could be evaluated.
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FIGURE D-2. Internal wave phase speed as a function of wavenumber magnitude for
May 16, 1979 observed data. Wave direction transverse to wind,
viscosity = 0.0.
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Internal wave phase speed as a function of wavenumber magnitude
for May 16, 1979 observed data. Wave direction along the wind,
viscosity = 0.0.
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Internal wave phase speed as a function of wavenumber magnitude
for May 16, 1979 obseﬁved data. Wave direction along the wind,
viscosfty = 2.0 m/sec”.
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16, 1979 observed data. k = 0.001, viscosity = 2.0 m/sec”,




Summary and Concluding Remarks

The second phase of our "Investigation of Convective Instability
in the Marine Boundary Layer" has been completed. The principal objective
of this study has been to develop a quantitative boundary layer analysis
technique requiring a small development effort and having low computing
demands. Secondary objectives have been to consult with Naval Research
Laboratory personnel on the design and interpretation of marine atmospheric
measurements, and to improve understanding of marine convective phenomena a$
sensed by radar.

A special report was submitted outlining considerations of a
theoretical nature in the conduct of marine atmospheric experiments and
two visits to the Naval Research Laboratory were made to discuss current
problems with laboratory personnel. The remaining topics are reported
in this document where they have been organized into the four sections
discussed above.

In Section A the mean structure of the boundary layer as displayed
by the SIGMET computer code is discussed; in Section B, the formulation
and mathematical implementation of a computer code and numerical studies
of the marine boundary layer are presented. This section contains the major
development of the study. In Section C, radar properties of the marine
atmosphere are reviewed and in Section D a study of atmospheric internal
wave propagation is reported.

The tools resulting from this investigation and previous work on
atmospheric boundary layer modeling form a coordinated set having broad
applications. The SIGMET boundary layer computer code takes account c¢f

the processes affecting the evolution of the profiles of density, moisture,
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norizontal wind, and diffusivity in the boundary layer *n response o
synoptic-scale weather forcing. In addition, quantities related to the

radar sensing of the atmosphere can be derived from these profiles.

Finally, with the development of the linear perturbation computer code
(PERT), the profiles can be employed as input data to assess wave propagation
and stability of a given boundary layer. The perturbation code is suf-
ficiently general to unify such previously diverse effects as interna)

wave propagation, shear layer instability, convective instability, critical
layer absorption, and other various boundary layer effects leading to
damping or instability.

In our investigation we bave sampled a few of the applications of
these codes. With the boundary layer code the modified radar index of
refraction and the radar structure function were formed. A large number
of perturbation calculations (-~ 200) have also been carried out to test
several versions of the PERT code and to investigate some new aspects of
boundary layer stability. We evaluated the effect of density stratification
on the Ekman unstable boundary layer taking into account the role of the
Coriolis term, and we investigated the generalized dispersion relation
of internal waves in a boundary layer containing a shearing wind field and
turbulent dissipation. Finally, we demonstrated how the mean boundary
layer code (SIGMET) and the perturbation code can be coupled together
to perform a boundary layer assessment of greater generality.

Further use and development of the above tools was not possible
within the scope of this investigation, but several interesting problems

can be studied in the future. Particularly valuable is the possibiluty

of correlating several different effects through the ccmbined use of these
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codes. We can determine, for example, the atmospheric conditions under
which radar surface ducting takes place and the associated boundary layer
stability. Another problem of interest is to determine the internal wave
properties of the boundary layer for a range of weather conditions.
Clearly, a linear stability analysis reveals only one aspect of the
secondary circulations of the boundary layer which result from instability.
To understand the state of the atmosphere reached after these instabilities
have grown requires that nonlinear effects be inciuded. Since conventional
methods of nonlinear fluid dynamics are cumbersome and very expensive,
it is desirable to retain the simplicity and generality of the linear
analysis in a nonlinear investigation. Some hope for accomplishing this

goal is held out by expansion methods restricted to a few terms.
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